
ON AREA IMAGES OF DOMAINS UNDER COMPLEX ANALYTIC
MAPPINGS

Bergman space on the unit disk, L2
a(D), consists of complex analytic functions on the unit disk,

D such that their square integral,
∫
D |h|2dxdy, is finite. Fock space, F2(C), consists of complex

analytic functions on C such that their weighted square integral with respect to the weight e−|z|2 ,∫
C |h|2e−|z|2dxdy, is finite, [Zhu12]. Instead of C, in Cn, Dj =

∂
∂zj

is an unbounded linear operator
on F2(Cn), known as annihilator operator, and Mk is the multiplication operator by zk, known as
creation operator. In fact, D∗

j = Mj and [Dj ,Mk] = DjMk−MkDj = δjk. In quantum mechanics,
position is defined by Aj =

Dj+Mj

2 and momentum by Bj =
Dj−Mj

2i on F2(Cn), [D’A19]. If one
considers operators on a Hilbert space as generalized complex numbers, then the adjoint of an
operator T notated as T ∗ plays the role of the complex conjugate of a complex number.

In this REU project, students will work with versions of operators M and D on L2
a(Ω), where

Ω is a domain in the complex plane. When h and Dh are in L2
a(Ω), that is, when h is in W 1,2

a (Ω),
the squared L2 norm, ∥Dh∥2L2(Ω) =

∫
Ω |∂h/∂z|2dxdy equals the area of the image of h, notated as

Area(h(Ω)) [GK06, D’A19], with multiplicity counted [Ahl78]. The operator M∗D∗DM −D∗D

has been explicitly calculated on W 1,2
a (D), with a geometric interpretation, as πS∗S, where S is

the restriction of h to the circle. That is, Area(Mh(D))−Area(h(D)), is calculated as the average
value of the module-square of h on the unit circle times π, [D’A19, Section 2 in Chapter 4]. In the
case, where the domain is the unit disk, D and M are not adjoints. The project aims to explore
the operator M∗D∗DM −D∗D from different perspectives, such as a functional space of h and a
domain on which the space is defined, [Zhu07]. The participants will also utilize computer algebra
systems to visualize complicated mathematical concepts, generate conjectures, and collaborate
to develop proofs or counterexamples for their conjectures. The participants will organize their
results and present them at different venues in various formats, such as posters, research talks,
and research articles. For examples of previous explorations of the operator M∗D∗DM −D∗D,
refer to [BÇGH22, ÇDTRRS24, AÇIJ25].
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